Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase.

نویسندگان

  • M A Ator
  • P R Ortiz de Montellano
چکیده

Incubation of horseradish peroxidase with phenylhydrazine and H2O2 markedly depresses the catalytic activity and the intensity, but not position, of the Soret band. Approximately 11-13 mol of phenylhydrazine and 25 mol of H2O2 are required per mol of enzyme to minimize the chromophore intensity. The enzyme retains some activity after such treatment, but this activity is eliminated if the enzyme is isolated and reincubated with phenylhydrazine. The prosthetic heme of the enzyme does not react with phenylhydrazine to give a sigma-bonded phenyl-iron complex, as it does in other hemoproteins, but is converted instead to the delta-mesophenyl and 8-hydroxymethyl derivatives. The loss of activity is due more to protein than heme modification, however. The inactivated enzyme reacts with H2O2 to give a spectroscopically detectable Compound I. The results imply that substrates interact with the heme edge rather than with the activated oxygen of Compounds I and II and specifically identify the region around the delta-meso-carbon and 8-methyl group as the exposed sector of the heme. Horseradish peroxidase, in contrast to cytochrome P-450, generally does not catalyze oxygen-transfer reactions. The present results indicate that oxygen-transfer reactions do not occur because the activated oxygen and the substrate are physically separated by a protein-imposed barrier in horseradish peroxidase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

How Modification of Accessible Lysines to Phenylalanine Modulates the Structural and Functional Properties of Horseradish Peroxidase: A Simulation Study

Horseradish Peroxidase (HRP) is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications...

متن کامل

A review on plant peroxidases

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...

متن کامل

In Vitro Study of Acriflavine Interaction with Horseradish Peroxidase C

Acriflavine (3,6-diaminoacridine) is an anticeptic drug developed in 1912. Previous research has focused on investigation of the intercalating features of acriflavine, but little is known about its interaction with proteins. Drug-receptor interaction is of major interest in clinical science. The aim of the present study was to evaluate the ability of acriflavine to induce alterations in conform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 4  شماره 

صفحات  -

تاریخ انتشار 1987